(相关资料图)
近年来,小天体(小行星、彗星等)已成为人类深空探索的热点。一方面,小天体保留了太阳系形成之初物质,可为研究太阳系和生命的起源提供线索。另一方面,近地小天体会对地球安全带来威胁,因而人们需要详查它的空间分布和轨道特征。我国天问二号任务将对近地小天体2016HO3进行采样返回、对主带彗星311P进行绕飞研究,获取了它们的轨道参数、表面物质组分、磁化强度、内部结构以及周围空间环境特征等,为探究小天体形成演化和表面物质迁移过程提供了数据资料。由于观测数据匮乏,目前人们对小天体周围的空间环境知之甚少,这将对近距离探测小天体特别是进行采样操作带来安全隐患。对于近地小天体2016HO3而言,其表面将在太阳光照和太阳风轰击作用下带电。由于尺寸小,2016HO3表面可能会带较强电场,将给表面采样带来放电风险。同时,2016HO3代表的是一类无大气天体,与太阳风相互作用并在背阳面形成尾迹结构。类似的尾迹也存在于月球上,但2016HO3尺寸比月球小3个量级以上,其尾迹可能有不同于月球尾迹的新特征。
中国科学院国家空间科学中心太阳活动与空间天气重点实验室副研究员谢良海建立了太阳风与小行星2016HO3相互作用的三维PIC模型,用于定量分析2016HO3周围电场和等离子体特征。研究发现,小行星2016HO3表面电势最高出现在日下点附近,可达+12V,背阳面最低电势约为-35V,对应的向阳面电场约为+2V/m,背阳面电势约为-5V/m。最大电场出现在晨昏线附近,可大于10V/m。此外,研究分析不同自转状态下的情况(Cases1-3)发现,当2016HO3长轴和太阳风垂直时(Case1)产生的电势大小及空间范围最大,其晨昏线附近电场可达20V/m。
该研究对不同太阳风条件下的带电特征进行研究发现,太阳风速度会造成向阳面电势增加,太阳风温度会造成背阳面电势减少。此外,在向阳面光电离作用占主导,在近表面附近会形成光电子鞘层,电子密度最高可达107.5m-3。在背阳面,由于太阳风离子被小行星2016HO3阻挡和吸收,形成一个低密度空腔,密度可低于1m-3。周围太阳风离子会试图填充密度空腔,带来往里传播的压缩波和往外传播的稀疏波,最终在太阳风对流作用下,形成锥形的尾迹结构。关于月球上的类似尾迹结构已有研究,并已建立自相似等离子体扩散理论(self-similar plasma expansion theory)。该理论主要考虑热运动和双极扩散电场对离子填充的作用,得到的锥角大小取决于离子声速和太阳风速度的比值。该理论能够较好地解释观测到的月球尾迹结构,并已大量用于研究其他无大气天体的尾迹结构。然而,该研究发现模拟得到的2016HO3尾迹锥角大小整体比理论模型值大(图2),特别是除离子声速和太阳风速度,锥角还会随太阳风密度变化。基于此,该研究提出除了热运动和双极扩散,背阳面的表面负电也会加速太阳风离子向密度空腔的填充,并带来较快的填充速度以及较大的尾迹锥角。在月球上由于表面等离子鞘比尾迹尺寸小,其表面电场的作用不明显。而对于2016HO3而言,其表面等离子鞘的厚度与尾迹横向尺度相当,因此表面电场的作用变得更重要。
图1. 小行星2016HO3周围电势和电场分布
图2. 不同太阳风条件下的尾迹结构,图中白色数字是模拟得到的锥角大小,红色数字是理论模型给出的锥角大小
该研究定量给出了小行星2016HO3周围的电场和等离子体密度分布,为我国天问二号任务小行星采样过程表面电位差控制以及空间环境探测方案的制定提供了依据。此外,该研究发现了新的尾迹形成理论,提升了人们对太阳风与小天体相互作用的认知。上述成果对探究其他无大气天体的空间环境具有重要参考意义。相关研究成果发表在《天体物理杂志》(The Astrophysical Journal)上。(来源:中国科学院国家空间科学中心)
相关论文信息:https://doi.org/10.3847/1538-4357/acd6ec
版权声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。